
Mrs. Suwarna Gothane Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 10(Part -1), October 2014, pp.16-22

 www.ijera.com 16 | P a g e

Approaches for Keyword Query Routing

Mrs. Suwarna Gothane, Srujana.P
M.E , Assitant professor, CMRTC

, M.Tech, CMRTC

Abstract-
The growing number of datasets published on the Web as linked data brings both opportunities for high data

availability of data. As the data increases challenges for querying also increases. It is very difficult to search

linked data using structured languages. Hence, we use Keyword Query searching for linked data. In this paper,

we propose different approaches for keyword query routing through which the efficiency of keyword search can

be improved greatly. By routing the keywords to the relevant data sources the processing cost of keyword search

queries can be greatly reduced. In this paper, we contrast and compare four models – Keyword level, Element

level, Set level and query expansion using semantic and linguistic analysis. These models are used for keyword

query routing in keyword search.

Index terms: Keyword search, Keyword query routing, Graph-structured data, linguistic and semantic analysis

I. Introduction
The web is no longer a collection of textual data

but also a web of interlinked data sources. One

project that largely contributes to this develop- ment

is Linking Open Data. Through this, a vast amount of

structured information was made publicly available.

Querying that huge amount of data in an intuitive

way is challenging.

Collectively, Linked Data comprise hundreds of

sources containing billions of RDF triples, which are

connected by millions of links. While different kinds

of links can be established, the ones frequently

published are sameAs links, which denote that two

RDF resources represent the same real-world object.

The representation of the linked data on the web is

shown in figure 1.

The linked data Web already contains valuable

data in diverse areas, such as e-government, e-

commerce, and the biosciences. Additionally, the

number of available datasets has grown solidly since

its inception. [1]

In order to search such data we use keyword

search techniques which employ keyword query

routing. To decrease the high cost incurred in

searching structured results that span multiple

sources, we propose routing of the keywords to the

relevant databases. As opposed to the source

selection problem [2], which is focusing on

computing the most relevant sources, the problem

here is to compute the most relevant combinations of

sources. The goal is to produce routing plans, which

can be used to compute results from multiple sources.

Figure 1: Example of Linked data on web

For selecting the correct routing plan, we use

graphs that are developed based on the relationships

between the keywords present in the keyword query.

This relationship is considered at the various levels

such as keyword level, element level, set level e.t.c.,

The rest of paper is organized as follows. Section

2 provides the brief outline on the existing work. The

different approaches are listed along with the some

examples explaining how the routing is considered in

the section 3 before we conclude in the section 4.

II. Related work:
Keyword Query Search can be divided into two

directions of work. They are: 1) keyword search

approaches compute the most relevant structured

results and 2) Solutions for source selection compute

the most relevant sources.

RESEARCH ARTICLE OPEN ACCESS

Mrs. Suwarna Gothane Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 10(Part -1), October 2014, pp.16-22

 www.ijera.com 17 | P a g e

2.1. Keyword search

In the keyword searching, we mainly follow two

approaches. They are schema-based approaches and

schema-agnostic approaches.

Schema-based approaches are implemented on top of

off-the-shelf databases. A keyword is processed by

mapping keywords to the elements of the databases,

called keyword elements. Then, using the schema,

valid join sequences are derived and are employed to

join the computed keyword elements to form the

candidate-networks that represent the possible results

to the keyword query.

Schema-agnostic approaches operate directly on

the data. By exploring the underlying graphs the

structured results are computed in these approaches.

Keywords and elements which are connected are

represented using Steiner trees/graphs. The goal of

this approach is to find structures in the Steiner trees.

For the query “Stanley Robert Award” for

instance, a Steiner graph is the path between uni1 and

prize1 in Fig. 1. Various kinds of algorithms have

been proposed for the efficient exploration of

keyword search results over data graphs, which might

be very large. Examples are bidirectional search [3]

and dynamic programming [4].

Recently, a system called Kite extends schema-

based techniques to find candidate networks in the

multi source setting [5]. It employs schema matching

techniques to discover links between sources and

uses structure discovery techniques to find foreign-

key joins across sources. Also based on pre computed

links, Hermes [6] translates keywords to structured

queries.

2.2 Database Selection

In order to get the efficient results for keyword

search, the selection of the relevant data sources

plays a major role. The main idea is based on

modeling databases using keyword relationships. A

keyword relationship is a pair of keywords that can

be connected via a sequence of join operations. For

instance, (Stanley, Award) is a keyword relationship

as there is a path between uni1 and prize1 in Fig. 1. A

database is considered relevant if its keyword

relationship model covers all pairs of query

keywords.

M-KS considers only binary relationships

between keywords. It incurs a large number of false

positives for queries with more than two keywords.

This is the case when all query keywords are pair

wise related but there is no combined join sequence

which connects all of them.

G-KS [7] addresses this problem by considering

more complex relationships between keywords using

a Keyword Relationship Graph (KRG). Each node in

the graph corresponds to a keyword. Each edge

between two nodes corresponding to the keywords

(ki, kj) indicates that there exists at least two

connected tuples ti ↔ tj that match ki and kj.

Moreover, the distance between ti and tj are marked

on the edges.

III. Approaches

For routing the keywords to the relevant data

sources and searching the given keyword query, we

propose four different approaches. They are:

1) Keyword level model 2) Element level model, 3)

Set level model, and 5) Query expansion using

linguistic and semantic features.

We compute the keyword query result and keyword

routing plan [11] which are the two important factors

of keyword routing.

3.1 Keyword level model

In keyword level, we mainly consider the

relationship between the keywords in the keyword

query. This relationship can be represented using

Keyword Relationship Graph (KRG) [7]. It captures

relationships at the keyword level. As opposed to

keyword search solutions, relationships captured by a

KRG are not direct edges between tuples but stand

for paths between keywords.

For database selection, KRG relationships are

retrieved for all pairs of query keywords to construct

a sub graph. Based on these keyword relationships

alone, it is not possible to guarantee that such a sub

graph is also a Steiner graph (i.e., to guarantee that

the database is relevant). To address this, sub graphs

are validated by finding those that contain Steiner

graphs. This is a filtering step, which makes use of

information in the KRG as well as additional

information about which keywords are contained in

which tuples in the database. It is similar to the

exploration of Steiner graph in keyword search,

where the goal is to ensure that not only keywords

but also tuples mentioning them are connected.

However, since KRG focuses on database selection,

it only needs to know whether two keywords are

connected by some join sequences or not. This

information is stored as relationships in the KRG and

can be retrieved directly. For keyword search, paths

between data elements have to be retrieved and

explored. Retrieving and exploring paths that might

be composed of several edges are clearly more

expensive than retrieving relationships between

keywords.

Keyword search over relational databases finds

the answers of tuples in the databases which are

connected through primary/foreign keys and contain

query keywords. As there are usually large numbers

of tuples in the databases, these methods are rather

expensive to find answers by on-the-fly enumerating

the connections.

To address this problem, proposed tuple units [8]

to efficiently answer keyword queries. A tuple unit is

Mrs. Suwarna Gothane Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 10(Part -1), October 2014, pp.16-22

 www.ijera.com 18 | P a g e

a set of highly relevant tuples which contain query

keywords.

Definition-1 (Tuple Units): Given a database D with

m connected tables, R1, R2, . . . ,Rm, for each tuple ti in

table Ri, let Rti denote the table with the same

primary/foreign keys as Ri, having a single tuple ti.

The joined result of table Rti and other tables Rj(j ≠ i)

based on foreign keys, denoted by R = j≠i Rj Rti,

is called a tuple set. Given two tuple sets t1 and t2, if

any tuple in t2 is contained in t1, we call that t1 covers

t2 (t2 is covered by t1). A tuple set is called a tuple

unit if it is not covered by any tuple set.

 To better understand the above definition, consider

the following example.

Table 1: An example database

 Example 1: Consider a publication database in

Table 1. For each tuple in a table, we join the three

tables and get the tuple sets as shown in Table 2.

Tuple set Ta1 is not a tuple unit as it is covered by

Tp1. Ta2 is a tuple unit as any tuple set does not cover

it. In this way, we can find all tuple units as shown in

Table 2. Each tuple unit can represent a meaningful

and integral information unit, and can be taken as an

answer of a keyword query. Considering a keyword

query {relational, database, keyword, search,

Hristidis}, the underlined tuple unit Tp5 (Table 2)

contains all the input keywords. We can take this

tuple unit as an answer. Note that we do not need to

on-the-fly identify structural relationships between

tuples in different tables, and the tuple-unit-based

method can improve search performance.

3.2 Element level model

Keyword search [9] relies on an element-level

model (i.e., data graphs) to compute keyword query

results. Elements mentioning keywords are retrieved

from this model and paths between them are explored

to compute Steiner graphs. To deal with the keyword

routing problem, elements can be stored along with

the sources they are contained in so that this

information can be retrieved to derive the routing

plans from the computed keyword query results.

 In this model, we mainly concentrate on IR

technique of data retrieval. This technique allow

users to search unstructured information using

keyword based on scoring and ranking, and do not

need users to understand any database schemas.

 We use graph-based data models to characterize

individual data models.

Definition 1 (Element-level Data Graph): An

element-level data graph g (N, ε) consists of

 The set of nodes N, which is the disjoint

union of Nε NV, where the nodes Nε represent

entities and the nodes NV capture entities’

attribute values, and

 The set of edges ε, subdivided by ε = εR] εA,

where εR represents inter entity relations, εA

stands for entity-attribute assignments. We

have e (n1, n2) 2 εR iff n1; n2 2 Nε and e (n1,

n2) 2 εA iff n1 2 Nε and n2 2 NV. The set of

attribute edges εA (n) = {e (n, m) 2 εA} is

referred to as the description of the entity n.

 Note that this model resembles RDF data where

entities stand for some RDF resources, data values

stand for RDF literals, and relations and attribute

Table 2: Tuple sets and Tuple units

Mrs. Suwarna Gothane Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 10(Part -1), October 2014, pp.16-22

 www.ijera.com 19 | P a g e

correspond to RDF triples. While it is primarily used

to model RDF Linked Data on the web, such a graph

model is sufficiently general to capture XML and

relational data. For instance, a tuple in a relational

database can be modeled as an entity, and foreign key

relationships can be represented as inter entity

relations.

Existing keyword search solutions naturally

apply to this problem. However, the data graph and

the number of keyword elements are possibly very

large in our scenario, and thus, exploring all paths

between them in the data graphs is expensive. This is

the main drawback of this model.

3.3 Set level model

In this model we derive the summary at the level

of set of elements.

Definition 2 (Set-level Data Graph): A set-level

data graph of an element-level graph g (Nε NV; εR

 εA) is a tuple g′ = (N′, ε′). Every node n′ N′

stands for a set of element level entities Nn′ Nε, i.e.,

there is mapping type: Nε → N′ that associates every

element-level entity n Nε with a set-level element

n′ N′. Every edge e′ (n′i, n′j) ε′ represents a

relation between the two sets of element-level entities

n′i and n′j. We have ε′ = {e′ (n′i, n′j) | e (ni, nj) εR,

type (ni) = n′i; type (nj) = n′j}.

This set-level graph essentially captures a part of

the Linked Data schema on the web that is

represented in RDFS, i.e., relations between classes.

Often, a schema might be incomplete or simply does

not exist for RDF data on the web. In such a case, a

pseudo schema can be obtained by computing a

structural summary such as a data guide [10].

A set-level data graph can be derived from a

given schema or a generated pseudo schema. Thus,

we assume a membership mapping type: Nε → N′

exists and use n n′ to denote that n belongs to the

set n′. An example of the set level graph is given in

Fig. 2. We consider the search space as a set of

Linked Data sources, forming a web of data.

Fig 2: set-level web data graph

We develop a set level Keyword-Element

Relationship Graph (KERG) [11].

 Intuitively, a dmax-KERG represents all paths

between keywords that are connected over a

maximum distance dmax. This is to capture all dmax-

Steiner graphs that exist in the data. The fig 3 below

shows the set-level KERG with dmax = 1.

Fig 3: set-level KERG with dmax = 1

Example 1: A KERG for our running example with

dmax = 1 is illustrated in Fig. 3. For instance, there is a

keyword-element node (Robert, Person, DBPedia).

Note that the relationship {(Robert, Person,

DBPedia), (Award, Prize, DBPedia)} actually stands

for the element-level connections {(Robert, per3,

DBPedia), (Award, prize1, DBPedia)}, and {(Robert,

per4, DBPedia), (Award, prize2, DBPedia)} because

per3 and per4 mention Robert, prize1 and prize2

mention Award, per3, per4 Person, prize1, prize2

Prize, there is a path between per3 and prize1,

and a path between per4 and prize2 (see web data

graph in Fig. 1). This example illustrates that

element-level relationships, which share the same

pair of terms (Robert and Award), classes (Person

and Prize), and sources (DBPedia and DBPedia) can

be summarized to one single set-level relationship.

 In order to compute the routing plan we use the

following algorithm.

--

Algorithm1: PPRJ ComputeRoutingPlan(K, W′K)

--

Input: The query K, the summary W′K (N′K, ε′K)

Output: The set of routing plans [RP]

JP ← a join plan that contains all {ki, kj} 2
K

T ← a table where every tuple captures a join

sequence of KERG relationships e′K ε′K, the score

of each e′K, and the combined score of the join

sequence; it is initially empty;

While JP .empty() do

 {ki, kj}← JP .pop();

 ε′{ki, kj}← retrieve(ε′K, {ki, kj});

 if T.empty() then

 T ← ε′{ki, kj};

 else

 T ← ε′{ki, kj} T;

Compute score of tuples in T via SCORE (K, W′
S
K);

Mrs. Suwarna Gothane Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 10(Part -1), October 2014, pp.16-22

 www.ijera.com 20 | P a g e

[RP] ← Group T by sources to identify unique

combinations of sources;

Compute scores of routing plans in [RP] via SCORE

(K, RP);

Sort [RP] by score;

--

3.4 Query expansion using linguistic and semantic

features

In document retrieval, many query expansion

techniques are based on information contained in the

top-ranked retrieved documents in response to the

original user query, e.g. [12], [15]. Similarly, our

approach is based on performing an initial retrieval of

resources according to the original keyword query.

Thereafter, further resources are derived by

leveraging the initially retrieved ones.

 Overall, the proposed process depicted in Figure 4

is divided into three main steps. In the first step, all

words closely related to the original keyword are

extracted based on two types of features – linguistic

and semantic. In the second step, various introduced

linguistic and semantic features are weighted using

learning approaches. In the third step, we assign a

relevance score to the set of the related words. Using

this score we prune the related word set to achieve a

balance between precision and recall.

Fig 4: AQE pipeline

A. Extracting and Preprocessing of Data using

Semantic and Linguistic Features:

 For the given input keyword k, we define the set of

all words related to the keyword k as Xk = {x1, x2, ...,

xn}. The set Xk is defined as the union of the two sets

LEk and SEk. LEk is constructed as the collection of

all words obtained through linguistic features and in

the same manner the semantic features also.

 Linguistic features extracted from WordNet are:

• Synonyms: words having similar meanings to the

input keyword k.

• Hyponyms: words representing a specialization of

the input keyword k.

• Hyponyms: words representing a generalization of

the input keyword k.

 The set SE comprises all words semantically

derived from the input keyword k using Linked Data.

These semantic features are defined as the following

semantic relations:

• sameAs: deriving resources having the same

identity as the input resource using owl:sameAs.

• seeAlso: deriving resources that provide more

information about the input resource using

rdfs:seeAlso.

• class/property equivalence: deriving classes or

properties providing related descriptions for the input

resource using owl:equivalentClass and

owl:equivalentProperty.

• superclass/-property: deriving all super

classes/properties of the input resource by following

the rdfs:subClassOf or rdfs:subPropertyOf property

paths originating from the input resource.

• subclass/-property: deriving all sub resources of the

input resource ri by following the rdfs:subClassOf or

rdfs:subPropertyOf property paths ending with the

input resource.

• broader concepts: deriving broader concepts related

to the input resource ri using the SKOS vocabulary

properties skos:broader and skos:broadMatch.

• narrower concepts: deriving narrower concepts

related to the input resource ri using skos:narrower

and skos:narrowMatch.

• related concepts: deriving related concepts to the

input resource ri using skos:closeMatch,

skos:mappingRelation and skos:exactMatch.

For each ri APk, we derive all the related

resources employing the above semantic features.

Then, for each derived resource r′, we add all the

English labels of that resource to the the set SEk.

Therefore, SEk contains the labels of all semantically

derived resource.

The set of all related words of the input keyword k is

defined as Xk = LEk SEk. After extracting the set Xk

of related words, we run the following preprocessing

methods for each xi Xk:

1) Tokenization: extraction of individual words,

ignoring punctuation and case.

2) Stop word removal: removal of common words

such as articles and prepositions.

3) Word lemmatisation: determining the lemma of

the word.

For example, as can be observed in Figure 5, the word

“Thinking machine” and “electronic brain” is derived by

synonym, sameAs and equivalent

Relations

Mrs. Suwarna Gothane Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 10(Part -1), October 2014, pp.16-22

 www.ijera.com 21 | P a g e

Fig 5: Exemplary expansion graph of the word

computer using semantic features.

B. Feature Selection and Feature Weighting

In order to distinguish how effective each feature is

and to remove ineffective features, we employ a

weighting schema ws for computing the weights of

the features as ws : fi F → wi. Note that F is the

set of all features taken into account. There are

numerous feature weighting methods to assign

weight to features like information gain [13], weights

from a linear classifier [14], odds ratio, etc. Herein,

we consider two well-known weighting schemas.

1) Information Gain (IG): Information gain is often

used to decide which of the features are the most

relevant. We define the information gain (IG) of a

feature as:

2) Feature weights from linear classifiers: Linear

classifiers, such as for example SVMs, calculate

predictions by associating the weight wi to the feature

fi. Features whose wi is close to 0 have a small

influence on the predictions. Therefore, we can

assume that they are not very important for query

expansion.

C. Setting the Classifier Threshold

 As a last step, we set the threshold for the classifiers

above. To do this, we compute the relevance score

value score (xi) for each word xi Xk. Naturally,

this is done by combining the feature vector Vxi = [α1,

α2, . . . , αn] and the feature weight vector W = [w1,

w2, . . . , wn] as follows:

IV. Conclusion and Future Scope
Keyword query search is a widely used approach

for retrieving linked data in an efficient manner. In

order to reduce the high cost of searching, we redirect

the keywords to the relevant data sources. Here we

use keyword routing to redirect the keywords. This is

done using different types of approaches. Here, we

discussed the four approaches of keyword query

evaluation to get the desired results. We use graph

based methods to compute the routing plans. Further,

we show that when routing is applied to an existing

keyword search system to prune sources, substantial

performance gain can be achieved.

References

[1] T. Berners-Lee, “Linked Data Design Issues,”

2009;www.w3.org/DesignIssues/LinkedData.

html

[2] B. Yu, G. Li, K.R. Sollins, and A.K.H. Tung,

“Effective Keyword-Based Selection of

Relational Databases,” Proc. ACM SIGMOD

Conf., pp. 139-150, 2007.

[3] V. Kacholia, S. Pandit, S. Chakrabarti, S.

Sudarshan, R. Desai, and H. Karambelkar,

“Bidirectional Expansion for Keyword

Search on Graph Databases,” Proc. 31st Int’l

Conf. Very Large Data Bases (VLDB), pp.

505-516, 2005.

[4] B. Ding, J.X. Yu, S. Wang, L. Qin, X. Zhang,

and X. Lin, “Finding Top-K Min-Cost

Connected Trees in Databases,” Proc. IEEE

23
rd

 Int’l Conf. Data Eng. (ICDE), pp. 836-

845, 2007.

[5] M. Sayyadian, H. LeKhac, A. Doan, and L.

Gravano, “Efficient Keyword Search Across

Heterogeneous Relational Databases,” Proc.

IEEE 23rd Int’l Conf. Data Eng. (ICDE), pp.

346-355, 2007.

[6] T. Tran, H. Wang, and P. Haase, “Hermes:

Data Web Search on a Pay-as-You-Go

Integration Infrastructure,” J. Web Semantics,

vol. 7, no. 3, pp. 189-203, 2009.

[7] Q.H. Vu, B.C. Ooi, D. Papadias, and A.K.H.

Tung, “A Graph Method for Keyword-Based

Selection of the Top-K Databases,” Proc.

ACM SIGMOD Conf., pp. 915-926, 2008.

[8] Jianhua Feng, Guoliang Li and Jianyong

Wang, “Finding Top-k answers in keyword

search over relational databases using tuple

units” IEEE transactions, VOL. 23 NO. 12,

December 2011.

Mrs. Suwarna Gothane Int. Journal of Engineering Research and Applications www.ijera.com

ISSN : 2248-9622, Vol. 4, Issue 10(Part -1), October 2014, pp.16-22

 www.ijera.com 22 | P a g e

[9] G. Li, B.C. Ooi, J. Feng, J. Wang, and L.

Zhou, “Ease: An Effective 3-in-1 Keyword

Search Method for Unstructured, Semi-

Structured and Structured Data,” Proc. ACM

SIGMOD Conf., pp. 903-914, 2008.

[10] R. Goldman and J. Widom, “DataGuides:

Enabling Query Formulation and

Optimization in Semistructured Databases,”

Proc. 23rd Int’l Conf. Very Large Data Bases

(VLDB), pp. 436-445, 1997.

[11] Thanh Tran and Lei Zhang, “Keyword Query

Routing” IEEE Transactions, VOL.26, NO.2,

February 2014.

[12] K. Collins- Thompson, Reducing the risk of

query expansion via robust constrained

optimization. In CIKM. ACM, 2009.

[13] H. Deng, G. C. Runger, and E. Tuv. Bias of

importance measures for multi-valued

attributes and solutions. In ICANN (2),

volume 6792, pages 293–300. Springer,

2011.

[14] D. Mladenic, J. Brank, M. Grobelnik, and N.

Milic-Frayling. Feature selection using linear

classifier weights: interaction with

classification models. In Proceedings of the

27th Annual International ACM SIGIR

Conference SIGIR2004. ACM, 2004.

[15] Saeedeh Shekarpour, Jens Lehmann, and

Sören Auer, “Keyword Query Expansion on

Linked Data Using Linguistic and Semantic

Features” IEEE Seventh International

Conference on Semantic Computing, 2013.

