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Abstract-  
The growing number of datasets published on the Web as linked data brings both opportunities for high data 

availability of data. As the data increases challenges for querying also increases. It is very difficult to search 

linked data using structured languages. Hence, we use Keyword Query searching for linked data. In this paper, 

we propose different approaches for keyword query routing through which the efficiency of keyword search can 

be improved greatly. By routing the keywords to the relevant data sources the processing cost of keyword search 

queries can be greatly reduced. In this paper, we contrast and compare four models – Keyword level, Element 

level, Set level and query expansion using semantic and linguistic analysis. These models are used for keyword 

query routing in keyword search.  

Index terms: Keyword search, Keyword query routing, Graph-structured data, linguistic and semantic analysis 

 

I. Introduction 
The web is no longer a collection of textual data 

but also a web of interlinked data sources. One 

project that largely contributes to this develop- ment 

is Linking Open Data. Through this, a vast amount of 

structured information was made publicly available. 

Querying that huge amount of data in an intuitive 

way is challenging.  

Collectively, Linked Data comprise hundreds of 

sources containing billions of RDF triples, which are 

connected by millions of links. While different kinds 

of links can be established, the ones frequently 

published are sameAs links, which denote that two 

RDF resources represent the same real-world object. 

The representation of the linked data on the web is 

shown in figure 1. 

The linked data Web already contains valuable 

data in diverse areas, such as e-government, e-

commerce, and the biosciences. Additionally, the 

number of available datasets has grown solidly since 

its inception. [1] 

In order to search such data we use keyword 

search techniques which employ keyword query 

routing. To decrease the high cost incurred in 

searching structured results that span multiple 

sources, we propose routing of the keywords to the 

relevant databases. As opposed to the source 

selection problem [2], which is focusing on 

computing the most relevant sources, the problem 

here is to compute the most relevant combinations of 

sources. The goal is to produce routing plans, which 

can be used to compute results from multiple sources. 

 

 
Figure 1: Example of Linked data on web 

 

For selecting the correct routing plan, we use 

graphs that are developed based on the relationships 

between the keywords present in the keyword query. 

This relationship is considered at the various levels 

such as keyword level, element level, set level e.t.c., 

The rest of paper is organized as follows. Section 

2 provides the brief outline on the existing work. The 

different approaches are listed along with the some 

examples explaining how the routing is considered in 

the section 3 before we conclude in the section 4. 

 

II. Related work: 
Keyword Query Search can be divided into two 

directions of work. They are: 1) keyword search 

approaches compute the most relevant structured 

results and 2) Solutions for source selection compute 

the most relevant sources. 
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2.1. Keyword search 

In the keyword searching, we mainly follow two 

approaches. They are schema-based approaches and 

schema-agnostic approaches. 

Schema-based approaches are implemented on top of 

off-the-shelf databases. A keyword is processed by 

mapping keywords to the elements of the databases, 

called keyword elements. Then, using the schema, 

valid join sequences are derived and are employed to 

join the computed keyword elements to form the 

candidate-networks that represent the possible results 

to the keyword query.     

Schema-agnostic approaches operate directly on 

the data. By exploring the underlying graphs the 

structured results are computed in these approaches. 

Keywords and elements which are connected are 

represented using Steiner trees/graphs. The goal of 

this approach is to find structures in the Steiner trees.  

For the query “Stanley Robert Award” for 

instance, a Steiner graph is the path between uni1 and 

prize1 in Fig. 1. Various kinds of algorithms have 

been proposed for the efficient exploration of 

keyword search results over data graphs, which might 

be very large. Examples are bidirectional search [3] 

and dynamic programming [4]. 

Recently, a system called Kite extends schema-

based techniques to find candidate networks in the 

multi source setting [5]. It employs schema matching 

techniques to discover links between sources and 

uses structure discovery techniques to find foreign-

key joins across sources. Also based on pre computed 

links, Hermes [6] translates keywords to structured 

queries. 

 

2.2 Database Selection 

In order to get the efficient results for keyword 

search, the selection of the relevant data sources 

plays a major role. The main idea is based on 

modeling databases using keyword relationships. A 

keyword relationship is a pair of keywords that can 

be connected via a sequence of join operations. For 

instance, (Stanley, Award) is a keyword relationship 

as there is a path between uni1 and prize1 in Fig. 1. A 

database is considered relevant if its keyword 

relationship model covers all pairs of query 

keywords.  

M-KS considers only binary relationships 

between keywords. It incurs a large number of false 

positives for queries with more than two keywords. 

This is the case when all query keywords are pair 

wise related but there is no combined join sequence 

which connects all of them. 

G-KS [7] addresses this problem by considering 

more complex relationships between keywords using 

a Keyword Relationship Graph (KRG). Each node in 

the graph corresponds to a keyword. Each edge 

between two nodes corresponding to the keywords 

(ki, kj) indicates that there exists at least two 

connected tuples ti ↔ tj that match ki and kj. 

Moreover, the distance between ti and tj are marked 

on the edges. 

 

III. Approaches 

For routing the keywords to the relevant data 

sources and searching the given keyword query, we 

propose four different approaches. They are: 

1) Keyword level model 2) Element level model, 3) 

Set level model, and 5) Query expansion using 

linguistic and semantic features. 

We compute the keyword query result and keyword 

routing plan [11] which are the two important factors 

of keyword routing. 

 

3.1 Keyword level model 

In keyword level, we mainly consider the 

relationship between the keywords in the keyword 

query. This relationship can be represented using 

Keyword Relationship Graph (KRG) [7]. It captures 

relationships at the keyword level. As opposed to 

keyword search solutions, relationships captured by a 

KRG are not direct edges between tuples but stand 

for paths between keywords.  

For database selection, KRG relationships are 

retrieved for all pairs of query keywords to construct 

a sub graph. Based on these keyword relationships 

alone, it is not possible to guarantee that such a sub 

graph is also a Steiner graph (i.e., to guarantee that 

the database is relevant). To address this, sub graphs 

are validated by finding those that contain Steiner 

graphs. This is a filtering step, which makes use of 

information in the KRG as well as additional 

information about which keywords are contained in 

which tuples in the database. It is similar to the 

exploration of Steiner graph in keyword search, 

where the goal is to ensure that not only keywords 

but also tuples mentioning them are connected.   

However, since KRG focuses on database selection, 

it only needs to know whether two keywords are 

connected by some join sequences or not. This 

information is stored as relationships in the KRG and 

can be retrieved directly. For keyword search, paths 

between data elements have to be retrieved and 

explored. Retrieving and exploring paths that might 

be composed of several edges are clearly more 

expensive than retrieving relationships between 

keywords. 

Keyword search over relational databases finds 

the answers of tuples in the databases which are 

connected through primary/foreign keys and contain 

query keywords. As there are usually large numbers 

of tuples in the databases, these methods are rather 

expensive to find answers by on-the-fly enumerating 

the connections. 

To address this problem, proposed tuple units [8] 

to efficiently answer keyword queries. A tuple unit is 
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a set of highly relevant tuples which contain query 

keywords. 

 

Definition-1 (Tuple Units): Given a database D with 

m connected tables, R1, R2, . . . ,Rm, for each tuple ti in 

table Ri, let Rti denote the table with the same 

primary/foreign keys as Ri, having a single tuple ti. 

The joined result of table Rti and other tables Rj(j ≠ i) 

based on foreign keys, denoted by R = j≠i Rj Rti, 

is called a tuple set. Given two tuple sets t1 and t2, if 

any tuple in t2 is contained in t1, we call that t1 covers 

t2 (t2 is covered by t1). A tuple set is called a tuple 

unit if it is not covered by any tuple set. 

  To better understand the above definition, consider 

the following example. 

 

 
Table 1: An example database 

 

 Example 1: Consider a publication database in 

Table 1. For each tuple in a table, we join the three 

tables and get the tuple sets as shown in Table 2. 

Tuple set Ta1 is not a tuple unit as it is covered by 

Tp1. Ta2 is a tuple unit as any tuple set does not cover 

it. In this way, we can find all tuple units as shown in 

Table 2. Each tuple unit can represent a meaningful 

and integral information unit, and can be taken as an 

answer of a keyword query. Considering a keyword 

query {relational, database, keyword, search, 

Hristidis}, the underlined tuple unit Tp5 (Table 2) 

contains all the input keywords. We can take this 

tuple unit as an answer. Note that we do not need to 

on-the-fly identify structural relationships between 

tuples in different tables, and the tuple-unit-based 

method can improve search performance. 

 

3.2 Element level model 

Keyword search [9] relies on an element-level 

model (i.e., data graphs) to compute keyword query 

results. Elements mentioning keywords are retrieved 

from this model and paths between them are explored 

to compute Steiner graphs. To deal with the keyword 

routing problem, elements can be stored along with 

the sources they are contained in so that this 

information can be retrieved to derive the routing 

plans from the computed keyword query results. 

  In this model, we mainly concentrate on IR 

technique of data retrieval. This technique allow 

users to search unstructured information using 

keyword based on scoring and ranking, and do not 

need users to understand any database schemas. 

   We use graph-based data models to characterize 

individual data models. 

 

Definition 1 (Element-level Data Graph): An 

element-level data graph g (N, ε) consists of  

 The set of nodes N, which is the disjoint 

union of Nε NV, where the nodes Nε represent 

entities and the nodes NV capture entities’ 

attribute values, and  

 The set of edges ε, subdivided by ε = εR ] εA, 

where εR represents inter entity relations, εA 

stands for entity-attribute assignments. We 

have e (n1, n2) 2 εR iff n1; n2 2 Nε and e (n1, 

n2) 2 εA iff n1 2 Nε and n2 2 NV. The set of 

attribute edges εA (n) = {e (n, m) 2 εA} is 

referred to as the description of the entity n. 

  Note that this model resembles RDF data where 

entities stand for some RDF resources, data values 

stand for RDF literals, and relations and attribute

 

Table 2: Tuple sets and Tuple units
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correspond to RDF triples. While it is primarily used 

to model RDF Linked Data on the web, such a graph 

model is sufficiently general to capture XML and 

relational data. For instance, a tuple in a relational 

database can be modeled as an entity, and foreign key 

relationships can be represented as inter entity 

relations. 

Existing keyword search solutions naturally 

apply to this problem. However, the data graph and 

the number of keyword elements are possibly very 

large in our scenario, and thus, exploring all paths 

between them in the data graphs is expensive. This is 

the main drawback of this model. 

 

3.3 Set level model 

In this model we derive the summary at the level 

of set of elements.  

 

Definition 2 (Set-level Data Graph): A set-level 

data graph of an element-level graph g (Nε  NV; εR 

 εA) is a tuple g′ = (N′, ε′). Every node n′ N′ 

stands for a set of element level entities Nn′ Nε, i.e., 

there is mapping type: Nε → N′ that associates every 

element-level entity n Nε with a set-level element 

n′ N′. Every edge e′ (n′i, n′j) ε′ represents a 

relation between the two sets of element-level entities 

n′i and n′j. We have ε′ = {e′ (n′i, n′j) | e (ni, nj) εR, 

type (ni) = n′i; type (nj) = n′j}. 

 

This set-level graph essentially captures a part of 

the Linked Data schema on the web that is 

represented in RDFS, i.e., relations between classes. 

Often, a schema might be incomplete or simply does 

not exist for RDF data on the web. In such a case, a 

pseudo schema can be obtained by computing a 

structural summary such as a data guide [10]. 

A set-level data graph can be derived from a 

given schema or a generated pseudo schema. Thus, 

we assume a membership mapping type: Nε → N′ 

exists and use n n′ to denote that n belongs to the 

set n′. An example of the set level graph is given in 

Fig. 2. We consider the search space as a set of 

Linked Data sources, forming a web of data. 

 
Fig 2: set-level web data graph 

 

We develop a set level Keyword-Element 

Relationship Graph (KERG) [11]. 

  Intuitively, a dmax-KERG represents all paths 

between keywords that are connected over a 

maximum distance dmax. This is to capture all dmax-

Steiner graphs that exist in the data. The fig 3 below 

shows the set-level KERG with dmax = 1. 

 

 
Fig 3: set-level KERG with dmax = 1 

 

Example 1: A KERG for our running example with 

dmax = 1 is illustrated in Fig. 3. For instance, there is a 

keyword-element node (Robert, Person, DBPedia). 

Note that the relationship {(Robert, Person, 

DBPedia), (Award, Prize, DBPedia)} actually stands 

for the element-level connections {(Robert, per3, 

DBPedia), (Award, prize1, DBPedia)}, and {(Robert, 

per4, DBPedia),  (Award, prize2, DBPedia)} because 

per3 and per4 mention Robert, prize1 and prize2 

mention Award, per3, per4 Person, prize1, prize2 

Prize, there is a path between per3 and prize1, 

and a path between per4 and prize2 (see web data 

graph in Fig. 1). This example illustrates that 

element-level relationships, which share the same 

pair of terms (Robert and Award), classes (Person 

and Prize), and sources (DBPedia and DBPedia) can 

be summarized to one single set-level relationship. 

   In order to compute the routing plan we use the 

following algorithm. 

------------------------------------------------------------ 

Algorithm1: PPRJ ComputeRoutingPlan(K, W′K) 

------------------------------------------------------------ 

Input: The query K, the summary W′K (N′K, ε′K) 

Output: The set of routing plans [RP] 

JP ← a join plan that contains all {ki, kj} 2
K 

T ← a table where every tuple captures a join 

sequence of KERG relationships e′K ε′K, the score 

of each e′K, and the combined score of the join 

sequence; it is initially empty; 

While JP .empty() do 

  {ki, kj}← JP .pop(); 

  ε′{ki, kj}← retrieve(ε′K, {ki, kj}); 

  if T.empty() then 

     T ← ε′{ki, kj}; 

 else 

     T ← ε′{ki, kj} T; 

Compute score of tuples in T via SCORE (K, W′
S
K); 
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[RP] ← Group T by sources to identify unique 

combinations of sources; 

Compute scores of routing plans in [RP] via SCORE 

(K, RP); 

Sort [RP] by score; 

------------------------------------------------------------ 

3.4 Query expansion using linguistic and semantic 

features 

In document retrieval, many query expansion 

techniques are based on information contained in the 

top-ranked retrieved documents in response to the 

original user query, e.g. [12], [15]. Similarly, our 

approach is based on performing an initial retrieval of 

resources according to the original keyword query. 

Thereafter, further resources are derived by 

leveraging the initially retrieved ones. 

     Overall, the proposed process depicted in Figure 4 

is divided into three main steps. In the first step, all 

words closely related to the original keyword are 

extracted based on two types of features – linguistic 

and semantic. In the second step, various introduced 

linguistic and semantic features are weighted using 

learning approaches. In the third step, we assign a 

relevance score to the set of the related words. Using 

this score we prune the related word set to achieve a 

balance between precision and recall. 

 
Fig 4: AQE pipeline 

 

A. Extracting and Preprocessing of Data using 

Semantic and Linguistic Features: 

   For the given input keyword k, we define the set of 

all words related to the keyword k as Xk = {x1, x2, ..., 

xn}. The set Xk is defined as the union of the two sets 

LEk and SEk. LEk is constructed as the collection of 

all words obtained through linguistic features and in 

the same manner the semantic features also.  

  Linguistic features extracted from WordNet are: 

• Synonyms: words having similar meanings to the 

input keyword k. 

• Hyponyms: words representing a specialization of 

the input keyword k. 

• Hyponyms: words representing a generalization of 

the input keyword k. 

   The set SE comprises all words semantically 

derived from the input keyword k using Linked Data. 

These semantic features are defined as the following 

semantic relations: 

• sameAs: deriving resources having the same 

identity as the input resource using owl:sameAs. 

• seeAlso: deriving resources that provide more 

information about the input resource using 

rdfs:seeAlso. 

• class/property equivalence: deriving classes or 

properties providing related descriptions for the input 

resource using owl:equivalentClass and 

owl:equivalentProperty. 

• superclass/-property: deriving all super 

classes/properties of the input resource by following 

the rdfs:subClassOf or rdfs:subPropertyOf property 

paths originating from the input resource. 

• subclass/-property: deriving all sub resources of the 

input resource ri by following the rdfs:subClassOf or 

rdfs:subPropertyOf property paths ending with the 

input resource. 

• broader concepts: deriving broader concepts related 

to the input resource ri using the SKOS vocabulary 

properties skos:broader and skos:broadMatch. 

• narrower concepts: deriving narrower concepts 

related  to the input resource ri using skos:narrower 

and skos:narrowMatch. 

• related concepts: deriving related concepts to the 

input resource ri using skos:closeMatch, 

skos:mappingRelation and skos:exactMatch. 

For each ri APk, we derive all the related 

resources employing the above semantic features. 

Then, for each derived resource r′, we add all the 

English labels of that resource to the the set SEk. 

Therefore, SEk contains the labels of all semantically 

derived resource. 

The set of all related words of the input keyword k is 

defined as Xk = LEk SEk. After extracting the set Xk 

of related words, we run the following preprocessing 

methods for each xi Xk: 

1) Tokenization: extraction of individual words, 

ignoring punctuation and case. 

2) Stop word removal: removal of common words 

such as articles and prepositions. 

3) Word lemmatisation: determining the lemma of 

the word. 

For example, as can be observed in Figure 5, the word 

“Thinking machine” and “electronic brain” is derived by 

synonym, sameAs and equivalent 

Relations 
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Fig 5: Exemplary expansion graph of the word 

computer using semantic features. 

 

B. Feature Selection and Feature Weighting 

In order to distinguish how effective each feature is 

and to remove ineffective features, we employ a 

weighting schema ws for computing the weights of 

the features as ws : fi F → wi. Note that F is the 

set of all features taken into account. There are 

numerous feature weighting methods to assign 

weight to features like information gain [13], weights 

from a linear classifier [14], odds ratio, etc. Herein, 

we consider two well-known weighting schemas. 

1) Information Gain (IG): Information gain is often 

used to decide which of the features are the most 

relevant. We define the information gain (IG) of a 

feature as: 

 
 

2) Feature weights from linear classifiers: Linear 

classifiers, such as for example SVMs, calculate 

predictions by associating the weight wi to the feature 

fi. Features whose wi is close to 0 have a small 

influence on the predictions. Therefore, we can 

assume that they are not very important for query 

expansion. 

 

C. Setting the Classifier Threshold 

  As a last step, we set the threshold for the classifiers 

above. To do this, we compute the relevance score 

value score (xi) for each word xi Xk. Naturally, 

this is done by combining the feature vector Vxi = [α1, 

α2, . . . , αn] and the feature weight vector W = [w1, 

w2, . . . , wn] as follows: 

             

 
 

IV. Conclusion and Future Scope 
Keyword query search is a widely used approach 

for retrieving linked data in an efficient manner. In 

order to reduce the high cost of searching, we redirect 

the keywords to the relevant data sources. Here we 

use keyword routing to redirect the keywords. This is 

done using different types of approaches. Here, we 

discussed the four approaches of keyword query 

evaluation to get the desired results. We use graph 

based methods to compute the routing plans. Further, 

we show that when routing is applied to an existing 

keyword search system to prune sources, substantial 

performance gain can be achieved.  
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